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1.0  Introduction. 
 
The following is the final report for contract FA8750-06-1-0091. The work focused on 
three areas all of which related to the overall theme of cooperation in wireless networks: 
the relay channel, architectures for cross-layer cooperation, and abstractions that allow 
developers to express complex communication requirements in dynamic wireless 
environments. 
 
2.0  Area 1: The relay channel 
 
The first area focuses on the relay channel. The relay channel is an information theoretic 
notion that captures in a mathematical way the fundamental ideas of one node acting as a 
relay for another. Limited practical work has been done on this idea. We proposed to 
develop a practical protocol based on these ideas using the idea of next hop 
neighborhoods. This work is being performed by Ketan Mandke as part of his work 
towards a dissertation in this area.  
 
Our goal is to demonstrate practical results in this area using a working wireless node 
prototype.  This will both complement the previous more theoretical work and also 
provide strong practical evidence of the applicability of these ideas.  As such Ketan’s 
efforts have focused on developing the Hydra prototype. Hydra is a prototype wireless 
node. The RF frontend is based on the GNU radio USRP, the Physical layer is 
implemented entirely in C++ in the GNU radio framework, and the MAC is also written 
in C++ using the Click framework. Ketan has been a major contributor to Hydra, both in 
writing code for the Physical layer and the MAC as well as debugging the 
implementation, and making major contributions to generating initial experimental results. 
He is one of the principle authors of the first Hydra overview [1] and also on an 
experience paper focusing on experimental issues [2].  He is currently implementing a 
relay-channel simulator.  
 
The following is a discussion of Hydra and some of our early results.  It is excerpted from 
[1], “Early Results on Hydra: A Flexible MAC/PHY Multihop Testbed,” which was 
authored by Ketan Mandke, Soon-Hyeok Choi, Gibeom Kim, Robert Grant, Robert C. 
Daniels, Wonsoo Kim, Robert W. Heath, Jr., and Scott M. Nettles. 
 
The impact of wireless communication and networking is obviously significant and 
growing.  Today most communications take a single wireless hop from a node to a cell 
tower or access point. In future systems though, it is likely that architectures in which 
data may take multiple wireless hops will be widely adopted. For example, in next 
generation cellular systems two-hop relay architectures may be used to overcome 
coverage problems. Other prominent examples include mesh networks, ad hoc networks, 
many varieties of sensor networks, etc. In general, networks with multiple wireless hops 
couple networking issues more closely to those of wireless transmission, in part simply 
because of the implied need to make routing decisions over variable wireless channels. 
They also present opportunities for cross-layer optimizations. For example, the media 
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access control (MAC) layer may benefit from using special physical (PHY) layer 
techniques to avoid interference among nodes on a multihop path.  Our research is 
broadly focused on such multihop networks where close coordination between the PHY 
and the network layers, especially the MAC, is important. Our ultimate goal is to harness 
the many increasingly sophisticated PHY techniques as well as a general understanding 
of wireless communication to create wireless networks that are better along a number of 
dimensions, including capacity, bandwidth, latency, reliability, and cost.   
 
Most wireless networking research uses simulation as its major validation technique, but 
there is significant evidence that this is problematic.  This is particularly true when 
sophisticated PHYs and MACs are used to communicate over real wireless channels. Our 
claim is that to achieve a high degree of realism, we must build working prototypes of the 
systems of interest and evaluate them using realistic channels, either by actually 
transmitting packets over the air, or at the least by using sophisticated channel emulation.   
 
The Hydra testbed is a concrete realization of this approach.  The most important goal of 
Hydra is to facilitate experimentation with state-of-the-art PHYs, MACs, and other 
network protocols and their interactions, and to do so on working hardware over realistic 
channels. As such, Hydra places a premium on the flexibility of implementation of the 
PHY, MAC, and other network software. Each Hydra node is composed of an open-
source reconfigurable radio frequency (RF) front-end connected to a general-purpose 
computer in which the PHY, MAC, and other network functionality are implemented in 
software.  In particular, we use the Universal Software Radio Peripheral (USRP) board 
developed by Ettus Research to implement the RF front-end of Hydra, our PHY is  
implemented in C++ using the GNU Radio framework, and our MAC is implemented in 
C++ using the Click modular router framework. Click also provides wireless routing and 
a connection to the Linux TCP/IP stack, which facilitates end-to-end testing.   
The use of C++ and several open-source frameworks promotes a further goal of making 
Hydra accessible to researchers who may not wish or be able to implement high 
performance hardware. The low cost of our software-defined approach means that it is 
feasible to have a significant number of Hydra nodes; and we believe the low cost and 
open-source nature of the Hydra platform will facilitate duplication of Hydra outside of 
UT Austin. Our hope is that the end result will be a system that we and other researchers 
can use effectively to validate a wide variety of cross-layer algorithms and protocols.  
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Figure 1: Block diagram of a Hydra node. 
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2.1  System Architecture and Implementation 

This section describes the hardware and software used to implement Hydra. Figure 1 
shows the block diagram of a Hydra node. Each node is composed of a general purpose 
PC (GPP) and a programmable RF front-end.  The RF front-end performs some basic 
filtering as well as upconversion and downconversion and connects to the GPP using 
USB 2.0. All other aspects of Hydra are implemented in software on the GPP. Although 
an FPGA or ASIC implementation would provide better performance, using a high-level 
programming language (C++) on a GPP makes our system easy to change, flexible, and 
programmable by researchers with little or no `hardware' background. Additionally, the 
cost for each Hydra node is only $1250 USD plus the cost of a GPP.   

2.2  THE RF FRONT-END 

Hydra's RF front-end is the USRP board developed by Ettus Research for use with GNU 
Radio. The USRP is comprised of a baseband board and up to two RF daughter cards. 
The baseband board is composed of a USB 2.0 controller, a million gate FPGA, and 
multiple high-speed DA and AD converters. The FPGA provides control functionality, 
FIFO data queuing, as well as decimation/interpolation filtering. The baseband board's 
four high-speed DA and AD converters operate at 128 and 64 mega-samples-per-second 
respectively. The DA/AD converters also have programmable gain amplifiers controlled 
by the FPGA. All of the control and data manipulation functionality of the baseband 
board can be controlled in software running on the GPP; and all data and control signals 
are communicated to the front-end over USB.   
 
GNU Radio defines a flexible API for the front-end that also supports reconfiguration of 
the RF daughter cards. The daughter cards are frequency agile radio transceivers with 
programmable gain control. They can be swapped to allow transceiver operation in 
various frequency bands (e.g. 400-500 MHz, ISM band, etc.). Additionally, the front-end 
features a fully synchronous design that allows multiple daughter cards to be 
synchronized providing support for research in multiple antenna systems (i.e. MIMO 
systems).   
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Figure 2: Block diagram of transmit and receive chain for a single-carrier OFDM 
physical layer based on IEEE 802.11a. 

2.3  THE PHYSICAL LAYER    

Hydra uses the GNU Radio framework for PHY implementation. This open-source 
software framework handles all hardware interfacing, multithreading, and portability 
issues, thus freeing the implementer to focus on the signal processing aspects of the 
software radio design. To compose a protocol in GNU Radio, users first build signal-
processing blocks in C++ and then connect these blocks together using the Python 
language to form a flow graph. In addition to the relative ease of programming in C++, 
this approach makes it easy to transition blocks that are part of a PHY simulator into 
GNU Radio. In fact, the blocks that make up Hydra were initially developed and verified 
as part of a LabVIEW simulation. GNU Radio is also an attractive development platform 
because of its growing community of users, who range from amateur radio enthusiasts to 
university researchers.   
 
To investigate advanced physical layer concepts (such as feedback in MIMO systems, 
OFDMA, and coding), Hydra's PHY supports OFDM and channel coding, and support 
for multiple antennas is being added. The PHY also has a very flexible interface to the 
MAC, implemented over UDP through a local IP connection. This low latency 
connection provides an efficient interface for cross-layer communication, and facilitates 
experiments in cross-layer design.   
 
For our current experiments, a single-antenna OFDM physical layer (shown in Figure 2) 
was used. This PHY is based on the IEEE 802.11a physical layer. The prototype supports 
physical layer data rates of up to 5.4~Mbps. This rate is limited by the bandwidth of 
USB~2.0, but higher bandwidth interfaces are being investigated for future revisions of 
the front-end.   
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2.4  THE MAC LAYER    

Hydra uses the Click framework for its MAC implementation. This software framework, 
developed at MIT, runs on a GPP and was originally created for building flexible and 
high performance routers. Similar to GNU Radio, packet-processing elements are coded 
in C++ and connected together using Click's own glue language. Elements can be flexibly 
configured to perform tasks for packet processing such as packet classification or 
scheduling, and then connected together in a flow graph to compose a protocol. Click not 
only handles memory management and scheduling for flow graph elements, but also 
allows users to select and modify various scheduling algorithms. As with GNU Radio, 
Click is also an attractive open-source development platform because of its growing 
community of users, which have used Click for a wide variety of applications including 
modular router design, ad hoc routing, and network coding.   
 
We have implemented several random access MAC protocols for Hydra in Click, in 
particular CSMA/CA and the distributed coordination function (DCF) mode of IEEE 
802.11. From this experience, it is clear that implementing a slotted MAC protocol for 
Hydra would be straightforward.  As a proof of concept for Hydra's cross-layer design 
potential, we have also extended the current DCF MAC design to create a rate-adaptive 
MAC protocol based on RBAR. This cross-layer protocol will be used to investigate rate-
adaptation in multihop networks.   

2.5  OTHER PROTOCOL LAYERS    

In Hydra, the wireless ad hoc networking protocols used to manage network connectivity 
are also implemented in Click. The code for these network protocols was contributed to 
the Click codebase by the creators of Grid, as well as other networking researchers. Since 
the MAC and networking protocols are both implemented in Click, they run together in 
their own address space, separate from GNU Radio and the TCP/IP protocol stack 
(running in the Linux user and kernel address space respectively). This parallelism may 
provide a performance improvement in multiprocessor environments.   
 
 Click features a simple tunneling mechanism that allows protocols to interface with the 
standard Linux TCP/IP stack. Thus, any application built on TCP/IP can be used with 
Hydra. This allows researchers using Hydra to easily test new wireless protocols with 
end-to-end application level experiments. Applications such as ping, ftp, and web 
sessions are used regularly to verify and debug the operation of Hydra.   

2.6  A Cross-Layer Design Demonstration   

To investigate how Hydra can facilitate exploration of cross-layer design, we 
implemented a rate-adaptive MAC protocol based on the Receiver Based Auto-Rate 
(RBAR) protocol and performed some preliminary experiments. We first discuss the 
protocol and then the details of the experiments.   
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 2.7  THE RATE-ADAPTIVE MAC PROTOCOL    

RBAR is a MAC protocol that uses the control messages of the DCF mode of IEEE 
802.11 to perform opportunistic link level rate-adaptation. The goal is to use a higher rate 
when the wireless channel permits. The 802.11 DCF MAC consists of a four-way 
handshake. Request-To-Send (RTS) and Clear-To-Send (CTS) control messages reserve 
the ``floor'' around the sender and receiver prior to data transmission. After successfully 
decoding a data (DATA) packet, the receiver responds with an Acknowledgment (ACK) 
message. In RBAR, the PHY at the receiver uses the RTS message to estimate link 
quality between the sender and receiver. Then, the MAC extracts this link quality  
information from the PHY and determines the maximum rate that can be supported by the 
link. The receiver then piggybacks this rate information in the CTS response to the sender, 
which uses that rate to send the data.  Cross-layer interactions are essential here, since the 
MAC has no direct way to determine link quality, while the PHY has no way to directly 
communicate with the sender.   

 
 

Figure 3: Calibration for the 4.8 Mbps and 5.4 Mbps data rates. 
 
In Hydra, the PHY estimates the signal-to-noise ratio (SNR) for each packet and then 
piggybacks this information to the MAC layer on the decoded packet. The flexible 
interface between the MAC and PHY facilitates this cross-layer communication and can 
be extended to accommodate other types of MAC/PHY interaction needed, for example, 
in opportunistic sub-channel allocation in OFDMA or interference mitigation.   
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2.8   EXPERIMENTAL SETUP    

In this simple experiment, our goal was simply to observe the rate adaptation process 
between two Hydra nodes. Hydra was operated in an indoor office environment. The two 
nodes were separated by a fixed distance. To change the wireless link quality, the  
transmit power of the sender node was varied over time. The MAC protocol implemented 
in Hydra responds to these changes in link quality by adapting the rate of the data 
transmission. The traffic pattern for this experiment consists of a stream of 1000 byte 
packets transmitted using UDP.  
 
The MAC protocol selects the data rate for the transmission from the possible rates using 
a threshold policy. We ran a careful calibration procedure to select the proper SNR 
thresholds for this policy by measuring the bit-error rate (BER) performance of the 
system as it varied with SNR for each data rate. Figure 3 shows the results of this 
calibration procedure (a plot of SNR in dB versus average BER) for the data rates of 
5.4~Mbps and 4.8~Mbps over both an emulated additive gaussian noise channel and an 
actual wireless channel. We set SNR thresholds for our MAC protocol in order to achieve 
an average BER below approximately 10^-5. For example, the thresholds for 4.8~Mbps 
and 5.4~Mbps were 28~db and 30~dB respectively.   
 

 
 

Figure 4: Trace for experiment with rate-adaptive MAC protocol. 
Experimental Results 

 
Figure 4 shows a trace of the results of this experiment. The X-axis is the packet 
sequence number and the Y-axis on the left is for the received SNR in dB and the Y-axis 
on the right is for the transmit power in dBm. Each packet is plotted at the SNR threshold 
for the rate at which it was transmitted. Open circles indicate that a packet was 
successfully received, while a closed circle indicates the packet was dropped.   
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In this trace, the transmit power was decreased and then increased in steps. We see that in 
general when changes in power cause the received SNR to cross a threshold, our MAC 
protocol adapts the data rate of the transmission as expected. We also see instances of 
packets that are transmitted at higher or lower data rates than most packets at the same 
power level. These are examples of how the algorithm can adapt to short-term 
fluctuations in the channel. Finally, upon investigating the cause of the dropped packets, 
we found they occurred when the channel worsened between the transmission of the RTS 
and the data, resulting in a packet sent at rate unsuitable for the channel. Thus even with 
this simple trace we see the complexities of studying such a protocol in the real world.   
 

3.0  Area 2: Architectures for cross-layer cooperation 

The second area of focus involved architectures for cross-layer cooperation.  This work is 
primarily the work of Soon-Hyeok Choi as part of his dissertation proposal. This work is 
complete, with the exception of several additional case studies, which will be part of 
Soon-Hyeok’s final dissertation, which is expected in the spring of 2008. We have 
created a taxonomy to capture the design space, a conceptual software architecture, and 
two concrete software architectures.  As discussed above, there has been one case study, 
focusing on rate adaptation, implemented in the Hydra testbed to support this work. Two 
more case studies are planned.  This work will appear in the Working IEEE/IFIP 
Conference on Software Architecture (WICSA) 2008 [3]. A preliminary version of this 
paper can be found on the web [4]. An additional paper, which uses the results of the first 
case study as the basis for a series of experiments involving rate-adaptation is in 
preparation [5].  
 
The following is a discussion of our cross-layer architectures.  It is excerpted from [4], 
“A Software Architecture for Cross-Layer Wireless Network Adaptations”, which was 
authored by Soon-Hyeok Choi, Dewayne E. Perry and Scott M. Nettles. 
 
The IP-based Internetwork has had an impact that its inventors could hardly have 
imagined. An important underlying key to the Internet's success is that its design and 
implementation is based firmly on a well-established architecture, the ``hourglass model''. 
The hourglass model defines a set of layers, each of which implements some aspect of the 
network, while leaving other aspects to higher levels. This architecture is a fundamental 
software engineering strategy to manage complexity in the design and implementation of 
a very large distributed hardware and software artifact. 
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Although, strictly speaking, the Internet is based on the hourglass model, for our purposes 
it is more useful to consider another layering model for networks, the OSI seven layer 
model, which for the four layers on which we will focus mirrors and somewhat refines 
the hourglass model. Figure 5 shows the layers and how they communicate in a 
conventional network implementation. The lowest layer is the physical layer (or PHY), 
which is responsible for actually sending data across a physical link. The PHY is the 
interface between the analog physical world and the digital world of data 
communications. Next, is the link/media access control layer (or MAC), which is 
responsible for managing communication for an individual link including coordinating 
when a sender is allowed to use a shared medium like the radio frequency (RF) spectrum. 
Next is the Network layer, which is responsible for connecting individual links into a 
multihop network that can deliver data between nodes that are not directly connected. For 
our purposes, the final layer is the Transport layer, which is responsible for coordinating 
end-to-end communication along the connections created by the Network layer. The key 
point is that each layer implements some key functionality with a well defined interface 
and leaves other functionality for the higher layers to implement. Taken together, we 
refer to the layers that make up the network as the stack. Figure 5 shows that in the 
conventional architecture each layer of the stack only communicates with the layer above 
and below it. 
 

 
 

Figure 5: Conventional layered architecture 
 
 
 
 
 
 
 



 11

For wired networks, the layered architecture is remarkably successful and the key 
assumptions and abstraction boundaries work well. However, the introduction of wireless 
links based on RF communication has revealed that the abstractions are not as cleanly 
defined as one might expect (or hope) and that higher layers make unwarranted 
assumptions about lower ones. The classic example is when TCP is run over a wireless 
link. Because wireless links are subject to transmission errors, sometimes they drop a 
packet. Although TCP has no problem retransmitting the lost packet, it also interprets the 
drop as a sign that some node in the network is overloaded and dropped the packet to 
reduce its load. TCP reacts by slowing the rate at which it sends data. This is an incorrect 
choice when the drop is due to a transmission error and results from an invalid 
assumption that TCP makes about the reliability of the PHY, a layer that resides several 
levels down the stack. This is just one example where there needs to be enhanced 
communication across the layers and of late the area of ``cross-layer design'' has become 
a very active one.  
 

 
 

Figure 6: Cross-layer communication paths 
 
Wireless ``links'' differ from wired ones in many ways. For example, they are lossy and 
their bandwidth varies with time. In fact, if the power level is changed, the set of nodes 
that are directly connected ``neighbors'' may even change. This leads to possible 
interactions between nonadjacent layers. For example, by changing power, a PHY 
property, the network layer might cause different routes to be discovered and used. Even  
adjacent layers may need to communicate in ways not possible in the current architecture. 
Later we will present an example where the MAC must obtain information from the PHY 
that is not part of normal packet processing. Figure 6 shows just some of the ways that 
information may need to cross between layers. Decision-making processes at any layer 
may need information from any other layer or even a set of other layers. As further 
shown in Figure 6, information might also be needed from other layers on other nodes, 
while the current architecture only allows communication between peer layers. Thus, in 
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general, cross-layer designs and implementations (or adaptations) may need almost 
arbitrary violations of the basic layering structure. Our goal is to develop an architecture 
that can accommodate this flexibility without destroying the current layered architecture 
with its advantages of modularity and robustness. Although our examples and research 
prototype focus on interaction between the MAC and PHY, our architecture 
accommodates other interactions, such as the Transport layer/MAC layer interactions 
needed to address the TCP over wireless problem.  
 
Most of the work on cross-layer design has proceeded in an undisciplined way and has 
neglected the design and implementation advantages of the layered architecture. The 
result are systems that are basically spaghetti code with limited structure. Thus far there 
has been no general consideration of how to construct cross-layer adaptations in a 
systematic and modular manner. Our goal is to remedy this by providing a framework for 
building cross-layer protocols that maintains to a significant degree the advantages of 
modularity and abstraction found in the layered design. As such our focus in this paper is 
not on any particular cross-layer adaptation (except as an example), but rather on the 
software engineering issues that arise from the need to violate layering in general. Our 
strategy for achieving this is to first create a taxonomy that allows us to describe the 
design space of possible cross-layer adaptations. We then use this taxonomy as a 
framework to define a conceptual software architecture that allows us to implement 
adaptations within this space in a systematic way that preserves modularity. This 
architecture further motivates a concrete architecture that allows us to validate our 
concepts in a working wireless network prototype. 

3.1  Motivating Examples   

We developed and validated our taxonomy and architecture using a wide variety of 
example adaptations. We present two of these, cross-layer rate control and cross-layer 
protocol reconfiguration, for motivation here. 

 
 
 

Figure 7: Rate control 
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For rate control the idea is simple. The maximum data rate depends on how good the RF 
connection (or channel) is between the sender and receiver. Ideally one sends at the 
highest rate possible, but the quality of the channel may change from packet to packet. 
One feasible solution arises because it is possible to measure the quality of the channel 
just before the data is sent. This is because in MACs such as the distributed coordination 
function (DCF) mode of IEEE 802.11, prior to data transmission there is an exchange of 
control messages between the sender and receiver to coordinate channel access. The 
sender first sends a request-to-send (RTS) to the receiver, which, if it is acceptable to 
send, replies with a clear-to-send (CTS).  The sender's PHY receives the CTS and as a 
side effect can determine the quality of the channel.  The sender's MAC can use this 
information to set the transmission rate of the immediately following data transmission. 
Cross layering arises because only the PHY can determine the channel state, but only the 
MAC knows which transmissions are control packets (and thus sent at a fixed low rate) 
and which are data (and thus candidates for sending at a higher rate). 
 
Figure 7 shows the process in detail. In step 0, the PHY receives some data and decodes 
it estimating the channel quality as a side effect. In step 1, if the data was a CTS, the 
MAC makes a call into the PHY to get the channel information. In step 2, the MAC 
calculates the correct rate. In step 3, the MAC communicates the correct rate to the PHY 
by actually attaching the rate to the data packet, a process we refer to as piggybacking. 
Finally, in step 4, the PHY sends the packet at the specified rate. 
 
A slight refinement of this example occurs if sender to receiver channel differs from the 
receiver to sender channel. In this case, we say that the channels are not reciprocal. Now 
we use the RTS to measure the channel quality. The MAC on the receiver then reads the 
channel quality from the PHY and piggybacks it on the CTS, which eventually results in 
the MAC on the sender obtaining the information. This is a simple case requiring 
internode communication. 
 
The second main example is cross-layer protocol reconfiguration, which allows a node to 
switch from using one wireless protocol to another. This cross-layer adaptation has a 
different processing style from rate control. Suppose that we want to allow a mobile 
device to move from an IEEE 802.11 wireless network to a Bluetooth network. One 
approach is autonomous reconfiguration of the protocol layers by monitoring the wireless 
communication environment. Essentially the node listens for other nodes using different 
protocols and reconfigures itself to use the new protocols as needed. Such 
reconfigurations are not triggered by or coordinated with packet reception or transmission, 
but rather occur when a node detects that other nodes in its vicinity are using the different 
protocol. 
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Figure 8: Protocol reconfiguration 
 
 
 
Figure 8 shows the process in detail. The PHY is able to hear all the signals in the 
wireless environment and thus detects that the alternative communication standard is in 
use. In step 1, when the PHY detects a new standard, it informs the reconfiguration 
process. This notification serves as the trigger for reconfiguration. In step 2, the 
adaptation process finds the proper configurations of protocol layers that meet the new 
standard and, in step 3, it changes the configuration of the stack. Notice that the actual 
reconfiguration is coordinated outside of the protocol processing modules. Since the 
adaptation process requires global information about the protocol layers, using a global 
manager makes it easy to manage all the configuration parameters for all layers.  
Briefly, another example is the local agile routing protocol. Here, nodes monitor the 
channel conditions and exchange information between themselves to assist in creating 
advantageous routes. For our purpose, the key aspects of this protocol are: first, that it 
exchanges information between nodes without regard to whether the nodes are carrying 
data traffic or not, and, second, that it might exchange information with nodes that are 
more than one hop away. 

3.2  Taxonomy   

We use cross-layer rate control and protocol reconfiguration to motivate our taxonomy. 
Broadly speaking, the goal of developing this taxonomy is to characterize the complex 
and wide design space of cross-layer adaptations. As importantly, the taxonomy also 
defines a vocabulary that we can use to describe cross-layer adaptations and their 
implementation in our architecture. Finally, the taxonomy serves to guide the creation of 
our architecture itself. 
 
Considering rate control, there are three primary constituents involved.  First, at its heart 
there is the actual cross-layer adaptation process, here, the process that decides the rate 
given a channel condition. Second, some information is communicated across layers, here, 
the channel condition and the rate. Third, there are the delivery mechanisms that are used 
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to communicate the information to and from the process, here, a direct call to gather the 
channel state and piggybacking the rate on the data packet. Figure 9 shows our complete 
taxonomy, with these three basic categories, Information, Delivery Method, and 
Adaptation Process, making up the top-level. 
 
Using rate control, we can partially refine each category. For information, there is one 
refinement based on the role of the information. The two subcategories are Status and 
Control, the roles of which are obvious.  For Delivery Mechanism, this example 
illustrates a distinction based on the path of the information.  Out-of-band information, 
such as the channel status, takes a path that is different from the actual packet, here, a  
procedure call from the MAC to the PHY.  In-band data, such as the rate, takes the same 
path as the packet and can be piggybacked on the packet. Finally, we see two attributes of 
the Adaptation Process. The first is based on the time that the adaptation is performed.  
This example illustrates just one possibility in which the adaptation is Synchronous. This 
means that the adaptation is synchronized with the reception or transmission of a packet. 
Here, the rate calculation is triggered by receiving the CTS and must take place before 
transmitting the data. The second attribute is based on the location of the adaptation 
process. Again, this example only illustrates one possibility in which the adaptation is 
actually part of the MAC itself. We classify this adaptation as being Inside the protocol 
processor. 
 

 
 

Figure 9: Taxonomy of cross-layer 
 
Internode rate control gives rise to an additional distinction for the Delivery Method 
based on range. For basic rate control, the range is Intranode and for the internode 
version it is Internode. These distinctions are important because any mechanism that 
communicates between nodes over the RF link is inherently more expensive and failure 
prone than one that does not. For Intranode delivery, the distinction of In-band and Out-
of-band is obvious as discussed above. But this classification is also applicable for 
Internode delivery. When the Internode version piggybacks the channel condition on the 
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CTS, this is In-band information that is piggybacked on an `existing' packet that is 
already being delivered to another node. In contrast, we might create a new packet to 
deliver Out-of-band information using an additional delivery path dedicated to cross-
layer information. 
 
Protocol reconfiguration allows us to complete our taxonomy by further refining the 
Adaptation Process. As a complement to Synchronous adaptations, the reconfiguration 
process is Asynchronous. This reconfiguration process is not coordinated with packet 
transmission or reception, but rather is triggered asynchronously when the PHY detects a 
new standard in its vicinity. Further, while rate control needs to finish its adaptation 
before the data transmission, the reconfiguration process can achieve its goal even if the 
actual time of adaptation is somewhat delayed after detection. Another significant 
refinement is that the reconfiguration process occurs Outside the protocol processor. Such 
adaptations are not part of the packet processing flow and thus might occur when the 
process needs to coordinate between a number of protocol layers, as might be needed in 
the control of quality of service or energy consumption. 
 
 
 

3.3  An Architecture for Adaptations  

Developing the taxonomy allowed us to describe the possible cross-layer adaptations 
succinctly. Our goal in developing an architecture is fundamentally to provide a set of 
mechanisms that can be used to implement a wide variety of cross-layer adaptations. Our 
main architecture is a conceptual one, which shows in general a set of components and 
their relationships in a system at a high-level abstraction. Thus our conceptual 
architecture helps us to understand how we can implement the desired adaptation 
processes using our framework and in practice serves as a reference model from which a 
variety of concrete architectures can be derived. This concrete architecture shows more 
detailed implementation issues that arise when we implement our framework on a 
specific wireless system. Thus, our architecture is a generic architecture, which can 
describe a range of cross-layer architectures. 
 
We begin by presenting a series of high-level goals and requirements for the architecture. 
We then present some key architectural decisions.  We then use the rate control and 
protocol reconfiguration examples to flesh out the details of the architecture. Finally we 
motivate a few aspects of the architecture that were not covered by the examples. 
 
The most important goal of our architecture is to provide a set of mechanisms that 
support the implementation of all reasonable cross-layer adaptations described by our 
taxonomy.  There are a number of secondary goals, which are fundamentally motivated 
by a desire to maintain the advantages of the existing layered architecture to the extent 
possible. The first goal is to preserve the modularity of existing protocol modules to the 
greatest extent possible.  This is key, because otherwise we would be free to simply 
implement any cross-layer adaptation in an ad-hoc manner. The next goal is to allow 



 17

cross-layer adaptations to be implemented in as flexible and extensible a manner as 
possible as well as to facilitate implementing multiple adaptations in a single system. 
Finally, we want to allow our implementations to be portable to a variety of protocol 
implementations. For example, ideally if we implement rate adaptation for one particular 
system, it would be easy to move this implementation to some other system as long as it 
has the same underlying framework for cross-layer adaptations.  

3.4  KEY ARCHITECTURAL DECISIONS  

Figure 10 shows our taxonomy after we have applied two key architectural decisions. The 
first decision is simple. Although functionally different, the implementation of cross-
layer information does not vary based on whether the data is used as status or control. 
Thus we can merge these two categories for the purpose of the architecture. 
 
The other change, elimination of the ``Inside the protocol processor'' location for the 
Adaptation Process requires more discussion.  The motivation is simple, if we implement 
an adaptation as part of a protocol module, we will by necessity make changes that 
compromise system modularity. Furthermore because these changes will be intertwined 
with the implementation of the base protocol, flexibility, extensibility, and portability will 
also be compromised. Thus the key challenge in creating our architecture becomes a 
question of whether we can achieve our goal of comprehensive cross-layer adaptation 
support, without allowing substantive changes to the protocol modules themselves. 

 
 

Figure 10: Refinement of our taxonomy 
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3.5  EXAMPLE DRIVEN DEVELOPMENT   
Figures 11-13 shows the progression of high-level stages that are required to map our rate 
control example to our proposed architecture.  We consider each stage in turn, explaining 
the architectural features required. 
 
The first stage (Figure 11) shows the mechanisms needed to support a Synchronous 
adaptation process outside of the protocol module. Note that the rate control adaptation 
has been placed in a separate cross-layer module. A key requirement is that when the 
packet moves from the PHY to the MAC, the adaptation process must be notified if that 
packet is a CTS. Thus we see that in step 0, we have added a MAC-PHY interceptor 
module. This module is inserted between the two existing layers and provides each with 
the same interface and thus does not compromise our modularity goal. In general, this 
interceptor is a kind of connector, but it will be implemented as a ``shim'' layer in the 
stack and so we do not group it with the other connectors discussed below. In step 1, the 
interceptor has detected a CTS and notifies the Synchronous event handler that connects 
the protocol module to the cross-layer module. Finally, in step 2 the event handler 
notifies the rate control process itself. 

 
Figure 11: Components for Synchronous process 
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The second stage (Figure 12) shows the support needed for Out-of-band delivery. In step 
1, the rate control process communicates to the Out-of-band connector that it needs the 
length of the packet and the channel status. Notice that unlike the case where the process 
is part of the MAC, it needs to access MAC as well as PHY information. In step 2, the 
connector communicates with the getLength and GetChannel adaptors attached to the 
MAC and PHY. The adaptation requires that we are able to query the protocol modules. 
By structuring these queries in terms of special adaptors, we are able to simplify changes 
to the protocol modules. A possible change in this case is to expose data length and 
channel information to allow the adaptors to access the information. Finally, in step 3, the 
rate control process calculates the new rate. 

 
Figure 12: Components for Out-of-band delivery 

 
The final stage (Figure 13) uses the existing mechanisms to complete the rate control 
process. In step 1 and 2, the interceptor notifies the rate control process that the data 
packet is being sent. In step 3 and 4, the rate control process sets the rate in the PHY 
using the setDataRate Adaptor. 
 
 
 
To implement the protocol reconfiguration process, we can use most of the mechanisms 
introduced for rate control. In our example, a global configuration manager already 
performed the reconfiguration process outside of protocol module. Further, the existing 
Out-of-band connector allows the manager to read and update information inside protocol 
modules such as the communication standard stored in the PHY and the configurations of 
the protocol layers. 
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The only new requirement is triggering the reconfiguration process when the PHY detects 
a new communication standard, which is an Asynchronous adaptation process. One 
solution is to allow the PHY to notify the manager of the detected standard information. 
The problem with this active notification is that the PHY implementation needs to be 
changed to be aware of the manager, making the PHY dependent on the manager. To 
address this problem, we introduce an Asynchronous event handler that periodically polls 
the standards information stored in the PHY and triggers the manager when it detects a 
change. Such a polling mechanism only requires an additional Adaptor attached to the 
PHY and thus maintains the modularity of the PHY. Although the periodic polling may 
cause some bounded delay before detecting changes, the Asynchronous adaptation 
process is a process that can tolerate such delays according to the definition in our 
taxonomy and so this is not an issue. 

 
Figure 13: Reusing the components for the rest of process 

 

3.6  COMPLETING THE ARCHITECTURE   

Figure 14 shows all the details of our architecture. Most aspects of this diagram have 
already been presented, the main refinement is in the connectors presented and their 
relation to whether the cross-layer processor is synchronous or asynchronous. These all 
are typical software connectors. Disregarding the event handler aspect for now, we see 
four kinds of connectors, corresponding to the four delivery mechanisms in the taxonomy. 
The Intranode connectors are used inside a single node to integrate existing protocol 
modules with our architecture. The In-band connector accesses the data stored in a 
packet's internal structure when the packet passes though an interceptor, while the Out-
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of-band connector uses adaptors to access data in the protocol modules themselves. The 
Internode connectors require that any information must be placed in a packet and sent 
from one node to another. In the In-band case the information can be piggybacked on the 
protocol packet. Thus this case is shown intercepting the data in the packet delivery path. 
In the Out-of-band case, the information must be formatted into its own packet and sent 
independently. Thus this is shown as a separate communication path. Returning to the 
event handlers, we see that the asynchronous versus synchronous nature of the processes 
is fundamentally captured by the type of the event handler. Synchronous event handlers 
are driven by the passage of packets through the interceptors. However, Asynchronous 
events (and thus processes) are triggered when the event handler inside Intranode version 
of Out-of-band connector detects a change of information within a protocol processor or 
when the Internode version of event handler receives a new information from counterpart 
in another node. 
 
 
 

 
Figure 14: A conceptual architecture cross-layer wireless network adaptations 

 

3.7  Validation  

Initial validation of our taxonomy and architecture was done by careful consideration and 
paper design of the examples found earlier, as well as others. A more substantial 
validation is ongoing using the basic strategy of implementing our framework and a 
number of our examples in a realistic wireless network testbed. We expect this 
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experience to allow us to refine our approach, in particular with respect to what concrete 
architectures are desirable. 

3.8  HYDRA  

Our implementation has been done in the context of our Hydra testbed. Hydra is a 
prototype multihop wireless network, which is designed to allow experimentation with 
implementations of PHYs, MACs, and cross-layer adaptations, using functional hardware  
and software, rather than simulation. Hydra uses an RF frontend, the universal software 
radio peripheral (USRP) from Ettus Research, which allows experimentation with various 
RF frequency bands. The USRP connects to the Hydra PHY over USB 2.0. The PHY is 
implemented using the GNU Radio framework and all signal processing is done using the 
general-purpose processor. Hydra's MAC interfaces to the PHY using interprocess 
communication and is implemented using the Click modular router. Click also provides 
network support and interfaces to the Linux TCP/IP stack allowing full end-to-end 
application-to-application experiments. Both GNU Radio and Click allow us to 
implement flexible network protocols. Using the GNU Radio framework, we create a set 
of ``signal processing blocks'', each of which implements a signal-processing algorithm. 
Then we can compose a PHY protocol by connecting these small blocks into a signal 
processing flow graph. Similarly, Click allows us to create a set of ``packet processing 
elements'', each of which implements some task required for packet processing and to 
compose a new protocol by connecting the elements.  
 
Hydra is currently operational. The current Hydra implementation is similar to 802.11 
PHY. It supports orthogonal frequency division multiplexing (OFDM) and multiple input 
multiple output (MIMO) at the physical layer, with support for multiple transmission 
rates. The MAC is essentially the 802.11 DCF MAC briefly discussed earlier.  

3.9  A CONCRETE ARCHITECTURE FOR HYDRA  

We refined our conceptual architecture to implement it in Hydra. The key challenge was 
that protocols in Hydra are implemented using three different protocol modules. The 
MAC and Network layers are implemented using Click while the PHY uses GNU Radio. 
Further the TCP/IP protocol stack implements the Transport layer. This meant that the 
Interceptors and Adaptors needed to be implemented differently to conform to each 
implementation environment. Such a protocol configuration that is composed of multiple 
protocol modules is generally true for most wireless system. For example, the wireless 
MAC protocol is implemented on a network interface card while routing protocols are 
implemented using the TCP/IP protocol stack. To address this problem, we divided all of 
the connectors into two levels, except the Internode version of the Out-of-band connector 
that is not connected to the protocol modules. Each local connector is implemented 
conforming to implementation environment provided by each protocol module and thus 
easily manages the Interceptors and Adaptors that are implemented using the same 
environment. Then the local connectors communicate with global connectors that provide 
cross-layer processors with event notification and data delivery. Thus this concrete 
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architecture still allows the cross-layer adaptations to be independent of the existing 
protocol implementations. 

 

3.10  RATE ADAPTATION  

We have implemented both Intranode and Internode rate control using our fully 
decoupled architecture. We have also implemented both versions in the ad-hoc manner 
that might be considered ``conventional'' to compare both the implementation techniques. 
 
The conventional implementation required a set of changes to the existing MAC and 
PHY implementations. To implement both the Intranode and Internode version of rate 
control processes: 
 

1. A set of Click elements were created and modified: - to allow the MAC to obtain 
the channel status information and   to execute rate adaptation - to use the new 
CTS packet format that delivers the channel state from the receiver to the 
transmitter.  

2. A GNU Radio block was changed: - to allow the MAC to access the channel 
status.  

3. The interfaces between the MAC and PHY were changed: - to allow cross-layer 
information piggybacked on packets to be marshalled and unmarshalled when 
they move between the MAC and PHY.   

 
The key problem was that such changes cause individual protocol processors to become 
dependent on others. At one point we changed the rate control in the MAC to use a 
different type of channel information, from an integer valued received signal strength 
indication (RSSI) to a floating point valued SNR. This required that the interfaces 
between the MAC and PHY and the signal processing block in the PHY all needed to 
change to deal with the new type of channel information. 
 
We then implemented the rate control processes based on our loosely coupled 
architecture. These implementations were encouraging in that they did not introduce any 
significant changes into the existing protocol processors. After implementation of the 
global and local connectors, to implement both the Intranode and Internode version of 
rate control processes: 
 

1. A set of Click elements were created: - to add the Interceptors into the MAC - to 
attach an Adaptor to access data length 

2. A GNU Radio block was created: - to attach an Adaptor that accesses channel 
status.  

3. Rate control processor was created: - to execute rate control.  
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Although a set of protocol processors were created and inserted into Click and GNU 
Radio to implement our architectural components, these components did not introduce 
any significant changes in the existing protocol implementations. An Interceptor notifies 
the Synchronous event handler of the passage of a CTS packet and transparently changes 
the format of the CTS packet. Further the Adaptors augmented the interfaces of the MAC 
and the PHY without affecting core functionality of the existing protocol processors. The 
only change caused by the Adaptor was to expose some variables inside the protocol 
processors to allow the Adaptor to access the information. 
 
We implemented the Internode version of rate control by extending the Intranode version. 
To extend the adaptation process in a conventional implementation, we needed to modify 
a few more packet processing elements in Click. The problem was that the dependency 
between the Click elements changed. However, the implementation based on our 
architecture only required extension of the existing rate control processor after inserting a 
few more Interceptors into Click. This shows that our architecture allows rate control to 
be independent of the infrastructure and to freely change its operation without significant 
impact on existing protocol implementations. 
 
 

4.0  Area 3: Abstractions that allow developers to express 
complex communication requirements in dynamic wireless 
environments 

4.1  The Scene Abstraction 

The final thrust of this project investigated software abstractions that simplify the 
development of applications in dynamic wireless environments.  We have developed the 
scene abstraction [6, 7], which enables an application developer to declaratively define a 
region of a wireless network with which to interact.  To create a scene tailored to his 
application, a developer writes a declarative specification encompassing metrics over 
environmental, network, and device characteristics.  Given these metrics and a 
corresponding threshold, we can dynamically construct a distributed data structure that 
represents a particular application’s scene.  As a device moves and its operating 
environment changes, its scene automatically updates to reflect these changing conditions.  
Once a scene is defined, an application can subsequently use the dynamically changing 
data structure to interact with exactly the portion of the operating environment that 
impacts its behavior.  Through simulation, we have shown that a naïve protocol that 
performs a distributed computation can build and maintain scenes with relatively low 
overhead [6].  The same measurements have also demonstrated that our approach scales 
well for increasing scene size and client mobility.  We have also designed a middleware 
architecture around the scene approach [8].  The DAIS (Declarative Applications in 
Immersive Sensor Networks) middleware defines a hierarchical architecture in which 
more powerful devices (i.e., client devices) execute significant middleware chunks that 
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interact with slimmed-down middleware components that execute on significantly 
resource-constrained embedded sensors.  The scene abstraction provides a fundamental 
interactive capability for the DAIS middleware that revolutionizes the manner in which 
networked devices can interact to support applications’ requirements.  In this report, we 
summarize the key aspects of the scene abstraction that have appeared in [6, 7]  

4.2  Motivating a New Network Abstraction 

In immersive networks, applications commonly need to interact directly with devices 
embedded in the environment.  This allows applications to operate over information 
collected directly from the local area (as shown in Figure 15).  This is in contrast to 
existing deployments in which the networks are commonly accessed through a single 
collection point.  While existing approaches that sense, aggregate, and stream information 
to a central collection point may also be useful to applications, we focus on enabling 
applications’ direct, on-demand, mobile interactions.  This new style of interaction is a 
direct motivation for a reexploration of protocol and coordination issues in immersive 
networks and embodies several unique challenges: 

• Locality of  interactions: An application  interacts directly with  local devices, which  can 
minimize  communication  overhead  and  latency.    However,  such  a  direct  interaction 
approach can also be cumbersome with respect to enabling the application to precisely 
specify the area from which it collects information. 

• Mobility‐induced  dynamics:  The  application  interacting  with  the  network  runs  on  a 
device  carried by a mobile user, and  the devices  in  the network may also be mobile.  
Devices’ interconnections and the area from which an application draws information are 
subject to constant change. 

• Unpredictability  of  coordination:  We  focus  on  using  general‐purpose  networks  for 
dynamic mobile  computing  applications.    Therefore,  few a priori  assumptions  can be 
made  about  the  applications’  needs  or  intentions,  requiring  networks  to  adapt  to 
unexpected and changing situations. 

The confluence of these challenges necessitates the development of a new paradigm of 
communication for applications in dynamic wireless environments. 

4.3  Scenes: Declarative Local Interactions 

The set of data sources near a user changes based on the user’s mobility.  If the network 
is well connected, the user will be able to reach vast amounts of raw information.  The 
application must limit the scope of its interactions to only the data that matches its needs.  
In our model, an application’s operating environment is encapsulated in a scene that 
constrains which networked devices influence the application.  This abstraction defines 
local, multihop neighborhoods surrounding a particular application, supports mobility by 
dynamically updating the scene’s participants, and minimizes how much a developer 
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must know about underlying implementations.  The constraints that define a scene may 
be on properties of hosts (e.g., battery life), network links (e.g., bandwidth), and data (e.g., 
type). 

Defining Scenes 
The declarative specification defining a scene allows an application programmer to 
flexibly describe the type of scene he wants to create.  Multiple constraints can be used to 
define a single scene.  The programmer needs only to specify three parameters to define a 
constraint: 

• Metric: A property of the network or environment that defines the cost of a connection 
(i.e., a property of hosts, links, or data). 

• Path  cost  function:  A  function  (such  as  sum,  average, minimum,  or maximum)  that 
operates on a network path to calculate the cost of the path. 

• Threshold: The value a path’s cost must satisfy  for that sensor to be a member of the 
scene. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 15: Distributed scene computation 
 
Figure 15 demonstrates the relationships between these components.  This figure shows 
only a one-constraint scene and a single network path.  The cost to a node in the path 
(e.g., node i) is calculated by applying the path cost function to the metric using 
information about the path so far (pi) and information about this node.  Nodes along a 
path continue to be included in the scene until the path reaches a node whose costs (e.g., 
ck) is greater than the scene’s threshold.  This functionality is implemented in a dynamic 
distributed algorithm that can calculate (and dynamically recalculate) scene membership.  
 
The selected network paths correspond to branches of a routing tree created as part of 
scene construction.  When a node needs to relay a reply back to the user, the reverse of 
the path on the routing tree can be used.  If a node receives a scene message that it has 
already processed, and the new metric value is shorter, this path is chosen, and the node 
forwards the information again because it may enable new nodes to be included in the 
scene. 
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The scene definition can be formalized in the following way: 
Given a client α, a metric M, and a positive threshold, T, find the set of hosts Sα 
such that all hosts in Sα are reachable from α and, for all hosts β in Sα, the cost of 
applying M on some path from α to β is less than T: 
 

Sα = 〈set β : M(α,β) < T :: β〉1 
 
The above formalization is a simplification of the scene formalization; it uses only one 
metric.  If the scene is specified by multiple metrics, the center expression must be true 
for all metric/threshold pairs. 

Maintaining Scenes 
While a scene provides the appearance of a dynamic data structure, the implementation 
behaves on demand; no proactive behavior occurs. Only when the application uses a 
scene does the protocol communicate with other local devices, reducing the overall 
communication overhead. At first glance, this approach may appear to incur an 
unpredictable latency for the first query posed to a scene. However, queries traverse the 
same path as the scene construction messages, and the queries themselves carry the scene 
construction information.  Therefore, the on-demand construction incurs no additional 
latency.   
 
For one-time queries, a scene is created, and the scene information is not stored or 
updated in any way. However, if the scene is to be used for a persistent query, it needs to 
be maintained. To maintain the scene for such continuous queries, each member sends 
periodic beacons advertising its current value for the metric. Each node also monitors 
beacons from its parent in the routing tree, whose identity is provided as previous hop  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16: A C-network 
 

                                                 
1  In  the  three‐part  notation:  〈op  quantified_variables  :    range  ::  expression〉,  the  variables  from 
quantified_variables take on all possible values permitted by range.  Each instantiation of the variables is 
substituted in expression, producing a mulitset of values to which op is applied, yielding the value of the 
three‐part expression.  If no instantiation of the variables satisfies  range, then the value of the three‐part 
expression is the identity element for op (e.g., ∅ if op is set). 
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information in the original scene message.  If a node has not heard from its parent for 
three consecutive beacon intervals, it disqualifies itself from the scene. This corresponds 
to the node falling outside of the span of the scene due to client mobility or other 
dynamics. In addition, if the client’s motion necessitates a new node to suddenly become 
a member of the scene, this new node becomes aware of this condition through the 
beacon it receives from a current scene member. 

Defining Scenes Based on Physical Characteristics 

 
The metrics used to specify scenes can be divided into two categories: those that define 
scenes based on properties of network paths or the devices on the network paths (e.g., 
latency or battery power) and those that define scenes based on physical characteristics of 
the environment (e.g., location or temperature).   
 
Using a physical characteristic to calculate network paths is plagued by the C-shaped 
network problem. Consider the network shown in Figure 16. Nodes A and B are within 
50m of each other, yet a discovery from A to B must leave the region of radius 50m 
surrounding A to find B. The only way to guarantee that every device within 50m is 
discovered is to flood the entire network. 
 
In the types of applications we address, an application may not be in direct 
communication with the devices with which it needs to interact.  For this reason, we 
focus on building the best multi-hop neighborhoods possible.  For metrics that measure 
physical characteristics, the question remains as to how to handle the ambiguity 
separating the natural specification (e.g., “all devices within 50m”) and the ability of a 
protocol to efficiently satisfy that specification (i.e., without flooding the network). Given 
our experience with the complexity involved in creating region specifications, we favor 
an approach that does not require strictly increasing metrics. This makes the 
programming interface simpler, but in the presence of configurations like that shown in 
Figure 16, our approach may not find some members of the specified scene even though 
they are transitively connected. 
 
The results demonstrate that our approach tends to find the vast majority of the scene 
members under reasonable conditions. Therefore, we favor natural scene specifications 
over complete accuracy of scene membership. 

4.4  Realizing Scenes on Resource-Constrained Devices 

The model for both construction and maintenance of scenes described in the previous 
section is tailored to the requirements of resource-constrained environments.  In creating 
applications for client devices, developers can leverage a Java interface, which allows 
them to use the scene communication abstraction to interface with other devices 
embedded in the environment. Software on these devices must also support the scene 
abstraction. In this section, we describe this implementation, showing how the code is 
structured to support dynamic, opportunistic communication. 
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Figure 17: Simplified software architecture 

 

 

A  Structured Implementation Strategy 

 
Our implementation uses the strategy pattern, a software design pattern in which 
algorithms (such as strategies for scene construction and maintenance) can be chosen at 
runtime depending on system conditions.  The strategy pattern provides a means to define 
a family of algorithms, encapsulate each one, and make them interchangeable.  Such an 
approach allows the algorithms to vary independently from the clients that use them. In 
the scene, the clients that employ the strategies are the queries, and the different strategies 
are SceneStrategy algorithms. Figure 17 shows the resulting architecture. We 
decouple the scene construction from the code that implements it so that we can vary 
message dissemination without modifying application-level query processing (and vice 
versa). 
 
The remainder of this section describes one implementation of the SceneStrategy, 
the BasicScene, which provides a prototype of the protocol’s functionality. Other 
communication styles can be swapped in for the BasicScene.  By defining the 
SceneStrategy interface, we enable developers who are experts in existing 
communication approaches to create simple plug-ins that use different query 
communication protocols and yet still take advantage of the scene abstraction and its 
simplified programming interface. 
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Figure 18: Implementation of the scene in nesC 

 

A Basic Instantiation 

 
While the scene abstraction is independent of the particular hardware used to support it, 
in our initial implementation, these software components have been developed for 
Crossbow Mica2 motes and are written for TinyOS in the nesC language. Our nesC 
implementation of the scene abstraction (along with other project information) is 
available at http://mpc.ece.utexas.edu/scenes/index.html. In nesC, an application consists 
of modules wired together via shared interfaces to form configurations. Figure 18 depicts 
the components of the scene configuration and the interfaces they share. 
 
This implementation functions as a routing component on each node, receiving each 
incoming message and processing it as our protocol dictates. In this picture, we show 
components as rounded rectangles and interfaces as arrows connecting components. A 
component provides an interface if the corresponding arrow points toward it and uses an 
interface if the corresponding arrow points away it. If a component provides an interface, 
it must implement all of the commands specified by the interface, and if a component 
uses an interface, it can call any commands declared in the interface and must handle all 
events generated by the interface. 
 
The Scene configuration uses the ReceiveMsg interface (provided in TinyOS), which 
allows the component to receive incoming messages from the radio (by handling the 
receive event). Specifically, within the Scene configuration, the SceneM component 

 
 

http://mpc.ece.utexas.edu/scenes/index.html
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handles this event.  SceneM implements most of the logic of the scene implementation 
on the sensor. 
 
While the model allows a scene to be defined by multiple constraints, a single 
SceneMsg contains only one constraint. This is a limitation of our proof-of concept 
implementation that will be removed in a more mature implementation.  The SceneMsg 
contains a sequence number that uniquely identifies the message. The sequence number 
is a combination of the unique client device id and the device’s sequence number. This 
allows a receiving node to differentiate between scenes for different client applications. A 
message contains two constants that instruct the SceneM component in processing the 
message: the metric and the path cost function. The use of constants to specify the metric 
and cost function makes the implementation a little inflexible because the set of metrics 
must be known a priori, but the approach prevents messages from having to carry code. 
Future work will enable this automatic code deployment.  The metricValue in the 
SceneMsg carries the previous node’s calculated value for the specified metric and is 
updated at the receiving node. In the case of a scene based on location, the 
metricValue may be the location of the source node, while in the case of a metric 
based on end-to-end latency, the metricValue may be the aggregate total latency on 
the path the message has traveled. The previousHop in the SceneMsg allows this 
node to know its parent in the routing tree and enables scene maintenance. The 
SceneMsg’s maintain flag indicates if the query is long-lived (and therefore whether 
or not the scene should be maintained).  Finally, each SceneMsg also carries the query 
to deliver to the application. 
 
Figure 21 shows how a scene message is processed at a receiving node. When SceneM 
receives a message it has not received before (based on the message’s unique sequence 
number), it determines whether the node should be a member of the scene by calculating 
the node’s metric value based on the metric and path cost function.  Because these fields 
are constants, SceneM can look up their meanings in a table and determine how to 
calculate the new metric value. Depending on the metric, this may require 
ContextSources, which provide relevant data for calculating a node’s value.   If 
necessary, context values are retrieved from the designated ContextSource through 
the query command in the ContextQuery interface.  If the metric demands a context 
source that the node does not provide, the device is not considered a part of the scene. 
When the necessary context values have been retrieved, the costFunction from the 
message is invoked.  The newly calculated value for the metric is compared against the 
value of the threshold in the SceneMsg. If the new value does not satisfy the threshold, 
then this node is not within the scene and the message is ignored. 
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Figure 19: Scene construction flow chart 
 

 
 
If this node is within the scene, the message is forwarded to allow inclusion of additional 
nodes. The node replaces the previousHop field with its node id. The metricValue 
field is populated according to the type of the metric.  This new message is broadcast to 
all neighbors (using TOS_BROADCAST_ADDR as the destination). The node also 
passes data to the application (through the Receive interface). 
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The scene also needs to be maintained in the case of a persistent query. If the maintain 
flag is set, then SceneM must monitor changes that may impact the node’s membership. 
For example, if the scene is defined by relative location and the user is walking through 
the network, as he moves away from a sensor, the sensor will need to be removed from 
the scene. The scene implementation on the sensors uses a Beacon module to transmit 
periodically to other nodes. As the Monitor component (described next) detects 
changes in the metric value, the value is updated (through SceneM) and reflected in the 
beacons sent to neighbors. In addition, SceneM must monitor incoming beacon 
messages from the parent. Such messages are received in SceneM and passed to the 
Monitor. The Monitor uses beacons from the parent, information about the scene 
(from the initial message), and information from the context sources to monitor whether 
the node remains in the scene. In addition, the MonitorTimer requires that the node 
has heard a beacon from the parent at least once in the last three beacon intervals. If 
either the parent has not been heard from or the received beacon pushes the node out of 
the scene, the Monitor generates an event for SceneM that ultimately ceases the 
node’s participation in the scene, including signaling the application to cancel its 
interactions with the client device. 

4.5  Evaluation and Analysis 

In this section, we provide an evaluation of our implementation. Our protocol’s intent and 
behavior differ significantly from other approaches, so direct comparison to existing 
protocols is not very meaningful. Instead, we measured our protocol’s overhead in 
varying scenarios, by employing TOSSIM, a simulator that allows direct simulation of 
code written for TinyOS. TOSSIM therefore allows us to perform large-scale simulations 
(in this case, of 100 nodes); these simulations are of a scale that is unmanageable in real 
sensor networks. However, the code executed in TOSSIM is the same code running on 
the sensors, and small-scale runs in the sensors themselves corroborate the results 
reported here. 

Simulation Settings 

 
In generating the following results, we used networks of 100 nodes, distributed in a 200 x 
200 foot area, with a single client device moving among them. We used two types of 
topologies: 1) a regular grid pattern with 20 foot internode spacing and 2) a uniform 
random placement. While the sensor nodes remained stationary, the client moved among 
them according to the random waypoint mobility model with a fixed pause time of 0. To 
model radio connectivity of the nodes, we used TOSSIM’s empirical radio model, a 
probabilistic model based on measurements taken from real Mica motes. In all cases, as 
the client moves, the scene it defines updates accordingly. In the different simulations, 
the client either remains stationary or moves at 2mph, 4mph, or 8mph. While these 
speeds appear to be on the slow side, they are reasonable for the pervasive computing 
scenarios we consider (e.g., 4mph is a very brisk walk; 8mph is an expected speed of 
vehicles on construction sites, etc.). In these examples, scenes are defined based on the 
number of hops relative to the client device, ranging from one to three hops. Other 
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metrics can be easily exchanged for hop count; we selected it as an initial test due to its 
simplicity. 
 
A final important parameter in these measurements is the beacon interval.  Recall that the 
beacon interval is the specified amount of time over which each node monitors beacons 
from its parent in the routing tree to maintain its own membership in the scene for 
continuous queries. If the node does not hear from its parent during that beacon interval, 
it disqualifies itself from the scene. We have currently set the beacon interval to be 
inversely proportional to client speed. Because this approach relies on shared global 
knowledge, this is not how beacon intervals will actually be assigned, and future work 
will investigate better ways of assigning this value. For example, in the future, clients can 
monitor their own speeds and embed this beacon interval in scene building packets.  
 
Alternatively, individual sensors could monitor the change in client connections over 
time (which can be correlated with mobility) and use this information to locally adapt the 
beacon interval. Both options allow nodes to adapt the beacon interval depending on the 
particular situation; this adaptation is critical to context. 

Performance Metrics 

 
We have chosen three performance metrics to evaluate our implementation: (i) the 
average number of scene members, (ii) the number of messages sent per scene member, 
and (iii) the number of messages sent per unit time. We evaluate these metrics for both 
grid and random topologies. 
 
The first metric measures how well our selected beacon intervals perform. The latter two 
metrics measure the scalability of the scene abstraction, i.e., how the protocol will 
function in scenes of increasing sizes and client mobility. The number of messages sent 
per scene member measures a sensor node’s cost of participation, which also estimates 
the potential battery dissipation for the sensors that participate in the scene (since energy 
expended is proportional to radio activity). The number of messages sent per unit time is 
a measure of the network’s average activity. Since the scene protocol operates on demand, 
activity takes place only within the scene. 

Simulation Results 

 
The number of scene members is almost independent of the client node’s speed. This 
means that the device is able to accurately reach the nodes that need to be members of its 
scene and shows that setting the beacon frequency to be proportional to the client node’s 
speed accurately keeps track of the moving client. 
 
Because we have set the beacon frequency to be directly proportional to the speed of the 
client node (e.g., if the client speed is 4 mph, beacons are sent every 0.5s, if the client 
speed is 8 mph, beacons are sent every 0.25s), beacons are sent more frequently as speed 
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increases, yielding the linear relationship. This shows how the battery dissipation for each 
sensor that participates in the scene would scale with increasing client mobility. 
 
Beacons are sent more frequently as the client node speed increases, causing more 
messages to be packed into a given time interval. In addition, as the scene size increases, 
more nodes become scene members, increasing the number of nodes that subsequently 
send beacon messages per unit time. 
 
These results demonstrate that even as the scene size increases, the overhead of creating a 
local communication neighborhood is manageable and localized to a particular region of 
interest. Since the scene protocol is an on-demand communication protocol, the activity 
in the network takes place only within the scene. The nodes that do not satisfy the scene 
constraints are inactive. The average number of scene members stays constant over 
changing client mobility for a specified scene size. 

4.6  Discussion and Future Work 

The evaluation reported in the previous section demonstrates the feasibility of placing a 
data communication abstraction for pervasive computing on highly resource-constrained 
devices. This is an important step as such sensing devices are an essential part of any 
immersive sensor network that supports such applications. The quantitative evaluation in 
the previous section, however, does not address the relationship of the scene abstraction 
to other neighborhood protocols.  This is largely due to the fact that the client-centered, 
device-agnostic form of the scene abstraction provides a completely novel perspective on 
interactions in sensor networks. More qualitative comparative evaluations are planned as 
future work. 
 
Another important point of evaluation not addressed in this paper is that of the 
expressiveness of the scene abstraction. Specifically, future work will investigate the 
question of how rich and usable the abstraction is with respect to the requirements of a 
variety of applications. Our own work with intelligent construction sites [9] has 
demonstrated applicability to a second domain (other than the first responder domain 
used in this paper), but we plan to perform additional user and application studies to 
further validate our expressiveness claims. In addition, we have made our implementation 
available at http://mpc.ece.utexas.edu/scenes/index.html for others to download and try 
for their applications. 
 
A final interesting point of discussion is that of the degree of adaptivity the scene 
abstraction provides. We have motivated throughout that awareness of and adaptation to 
the surrounding environment are crucial to enabling pervasive computing applications. 
The scene abstraction as described already incorporates several points of adaptation, most 
specifically allowing the participants in a scene to change over time in response to client 
mobility or to changes in the network or physical environment. We have already 
discussed such adaptation with respect to setting the scene’s  beacon frequency to be 
sensitive to the client mobility or a sensor node’s local perception of mobility. Future 
work will explore additional adaptation points that could make the abstraction even more 

http://mpc.ece.utexas.edu/scenes/index.html
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responsive to pervasive computing applications. For instance, one could imagine a 
scene’s threshold expanding or contracting based on the environmental values sensed or 
the density of available readings. 
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